Concrete Durability Dr Peter Taylor

Outline

- > What is durable concrete?
- Why does concrete fail?
- > What can we do about it?

What is durable concrete?

- >The right
 - o Materials
 - Proportions
 - Workmanship
- > For the environment
- So that it lasts for the intended time

Concrete

Portland Cement

- Traditional cements (Type I to Type V)
- > Blended cements

Pozzolans

- > Slag (GGBFS)
- >Fly ash
- > Silica Fume
- > Metakaolin

Cement Hydration

$$\rightarrow$$
 PC + H₂O \rightarrow CSH + CaOH₂

➤ CaOH + Pozz → CSH

Water

$$\mathbf{W/C} = \mathbf{0.45}$$

W/C = 0.75

Effect of w/c Ratio on F/T Resistance

Aggregates

Chemical Admixtures

Why Does Concrete Fail?

- > Alkali Silica Reaction
- Sulfate Attack
- Frost Related Damage
- >Others...

Alkali Silica Reaction

- ► Water + alkali hydroxide + reactive silicate aggregate → alkali silicates
- ➤ Alkali silicates + water → gel + expansion

Sulfate Attack

- > Sulfates
- > Water
- $> C_3A$

Sulfate Attack

- $ightharpoonup C_3A + C' + 12H \rightarrow C_4A'H_{12}$ (monosulfate)
- $ightharpoonup C_4A'H_{12} + 2C' + 20H \rightarrow C_6A'_3H_{32}$ (ettringite)
- ightharpoonup Na₂SO₄ + Ca(OH)₂ + 2H₂O ightharpoonup 2NaOH + CaSO₄.2H₂O (gypsum)

Freeze thaw / Salt scaling

- Cyclic freezing and expansion of water
- Osmotic pressure
- Salt crystallization
- ▶ D-Cracking

Salt Crystallization

So How Do We Make Our Concrete Survive?

- > Understand the environment
- Prevent water from getting in
- Choose the right materials
- Proportion them well
- Use good workmanship

Curing

Curing

Time

Permeability

- In concrete, low permeability is important for keeping things out:
 - o oxygen: steel corrosion
 - water: frost damage, leaching, ASR, corrosion
 - o other chemicals: sulfate attack, carbonation

Permeability

- > Low water / cement ratio
- High degree of hydration
- Supplementary cementing materials
- Minimize voids
- Minimize cracking

Materials Selection

- Alkali-silica reaction
 - o Reactive aggregate
 - o Fly ash (CaO / SiO₂ ratio)
 - Alkali content of concrete
- Sulfate attack:
 - Cement C₃A content
 - o Fly ash

Materials Selection

- Frost Damage
 - D-Cracking choose smaller size
 - Appropriate air content
 - Supplementary cementing materials

Proportioning

- Minimize paste content
- System grading
- Supplementary cementing materials dosage
- Water cementing materials ratio
- > Air content

μm

Mixing

- Batching sequence
- > Time in the mixer
- Retempering
- Temperature

Placing

- Avoid segregation during transporting
- Ensure adequate compaction
- Protect from the elements
 - o Wind
 - o Rain
 - o Temperature
- Time the joint cutting

Curing

- Start early
- ▶ Stay late
- Complete coverage
- Control temperature

Closing

It is possible to make potentially durable concrete...

